Supplementary MaterialsS1 Fig: ExM expands microbial species to different extents

Supplementary MaterialsS1 Fig: ExM expands microbial species to different extents. Fig: Optimization of ExM for planarian cells. (ACC) Tissue clearing by digestive function and development. Grids in the backdrop were included showing cells transparency. Dashed lines in (C): the format from the planarian body, which can be bigger than the imaging look at. Scale pubs, 1 mm. (D, E) ExM of planarian cells following a process just like [31], but utilizing a different linker molecule. As the earlier study [31] utilized 6-((acryloyl)amino)hexanoic Neochlorogenic acid acidity, succinimidyl ester (acryloyl-X, SE) as the linker, we examined glutaraldehyde (GA) (D) or MA-NHS (E) as linker substances. Post-expansion pictures of planarians immunostained for muscle tissue fibers proven that development using GA disrupts muscle fibers, whereas no distortion was observed in MA-NHSClinked tissues. Scale bars, 20 m. acryloyl-X, SE, 6-((acryloyl)amino)hexanoic acid, succinimidyl ester; ExM, expansion microscopy; GA, glutaraldehyde; MA-NHS, methacrylic acid cells in vitro. (A) Representative maximum intensity projection of mCherry-cells before expansion. (B) After 1 h of lysozyme treatment to digest the cell wall, cells expanded approximately 2-fold. Note that mCherry (left) and DAPI (right) signals colocalized. (C) Quantification of the expansion of cells in images similar to (B). The data underlying this figure are included in S11 Data. (D, E) Live cells that were treated with 0.5 mg mL?1 lysozyme for 1 h at 37C prior to fixation (D) or cultured in an acidic, magnesium-depleted minimal Neochlorogenic acid medium (MgM-MES, pH 5.0, used to mimic the low pH, low Mg2+ environment of the phagosome) (E) did not expand, indicating Neochlorogenic acid that the cell wall remained intact under these conditions. Scale bars, 10 m. MgM-MES, magnesium minimal MES medium; ExM, expansion microscopy of microbes.(TIF) pbio.3000268.s005.tif (3.4M) GUID:?D7E07EAF-25FE-4B7E-BB63-101B4F2C3C9B S1 Table: Reagents used in ExM. ExM, expansion microscopy of microbes.(DOCX) pbio.3000268.s006.docx (14K) GUID:?F01BA11A-227B-48D8-928D-BAB01D629409 S1 Data: Raw data of Fig 1B. (XLSX) pbio.3000268.s007.xlsx (41K) GUID:?0A6573CA-78DC-4B93-9E17-60D0E968CAFA S2 Data: Raw data of Fig 1E. (XLSX) pbio.3000268.s008.xlsx (12K) GUID:?07A0FC62-498A-4DCA-BF00-4CFEEAD5486A S3 Data: Raw data of Fig 2B. (XLSX) pbio.3000268.s009.xlsx (16K) GUID:?411BEEEA-D6F6-45F7-9A2E-30BEE2925706 S4 Data: Raw data of Fig 2C. (XLSX) pbio.3000268.s010.xlsx (9.4K) GUID:?E8C43A69-F2D0-42A2-AFEB-552BC558A184 S5 Data: Raw data of Fig 2D. (XLSX) pbio.3000268.s011.xlsx (11K) GUID:?88C899E9-A4C3-40B0-B7FD-8773533D15BF S6 Data: Raw data of Fig 3C. (XLSX) pbio.3000268.s012.xlsx (11K) GUID:?EE174F24-3DD0-41C3-8F3D-B26480BC315C S7 Data: Raw data of Fig 3F and 3G. (XLSX) pbio.3000268.s013.xlsx (9.1K) GUID:?B96F0760-4934-4666-8FEE-E8F2F34CEA8C S8 Data: Raw data of Fig 4F. (XLSX) pbio.3000268.s014.xlsx (19K) GUID:?92D24D26-6BAC-4B6B-870E-D066EB340A88 S9 Data: Raw data of Fig 5D. (XLSX) pbio.3000268.s015.xlsx (9.7K) GUID:?CDB10FE8-3DCD-4D1E-B67C-A5B0F2368B33 S10 Data: Raw data of S1C Fig. (XLSX) pbio.3000268.s016.xlsx (23K) GUID:?A4743154-43EC-4EB8-83E4-C0CD745A34D8 S11 Data: Raw data of S5C Fig. (XLSX) pbio.3000268.s017.xlsx (11K) GUID:?3BB52875-872A-4FB5-8993-2B7DD3466184 Data Availability StatementAll relevant data are within the paper and its Supporting Information files. Abstract Mouse monoclonal to ROR1 Imaging dense and diverse microbial communities has broad applications in basic microbiology and medicine, but remains a grand challenge due to the fact that many species adopt similar morphologies. While prior studies have relied on techniques involving spectral labeling, we have developed an expansion microscopy method (ExM) in which bacterial cells are physically expanded prior to imaging. We find that expansion patterns depend on the structural and mechanical properties of the cell wall, which vary across conditions and species. We utilize this phenomenon like Neochlorogenic acid a quantitative and delicate phenotypic imaging comparison orthogonal to spectral parting to solve bacterial cells of different varieties or in specific physiological states. Concentrating on hostCmicrobe relationships that are challenging to quantify through fluorescence only, we demonstrate the power of ExM to tell apart species via an in vitro described community of human being gut commensals and in vivo imaging of the model gut microbiota, also to sensitively identify cell-envelope damage due to antibiotics or previously unrecognized cell-to-cell phenotypic heterogeneity among pathogenic bacterias because they infect macrophages. Intro Imaging of heterogeneous bacterial populations offers wide applications in understanding the complicated microbiota that.